Harnack inequalities and sub-Gaussian estimates for random walks

نویسندگان

  • Alexander Grigor'yan
  • Andras Telcs
چکیده

We show that a-parabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to so called-Gaussian estimates for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order R. The latter condition can be replaced by a certain estimate of a resistance of annuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the equivalence of parabolic Harnack inequalities and heat kernel estimates

We prove the equivalence of parabolic Harnack inequalities and sub-Gaussian heat kernel estimates in a general metric measure space with a local regular Dirichlet form.

متن کامل

Mathav Murugan 1 Gaussian Estimates for Random Walks

My research interests lie at the interface of probability and analysis. The broad goal of my research is to understand how the long-term behavior of Markov chains depends on the large-scale geometry of the underlying state space. In particular, I am interested in heat kernel estimates for discrete time Markov chains on state spaces having a geometric structure, for instance a weighted graph, Ri...

متن کامل

Quasisymmetric uniformization and heat kernel estimates

We show that the circle packing embedding in R2 of a one-ended, planar triangulation with polynomial growth is quasisymmetric if and only if the simple random walk on the graph satisfies sub-Gaussian heat kernel estimate with spectral dimension two. Our main results provide a new family of graphs and fractals that satisfy sub-Gaussian estimates and Harnack inequalities.

متن کامل

Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps

We investigate the relationships between the parabolic Harnack inequality, heat kernel estimates, some geometric conditions, and some analytic conditions for random walks with long range jumps. Unlike the case of diffusion processes, the parabolic Harnack inequality does not, in general, imply the corresponding heat kernel estimates.

متن کامل

Frequent Points for Random Walks in Two Dimensions

For a symmetric random walk in Z which does not necessarily have bounded jumps we study those points which are visited an unusually large number of times. We prove the analogue of the Erdős-Taylor conjecture and obtain the asymptotics for the number of visits to the most visited site. We also obtain the asymptotics for the number of points which are visited very frequently by time n. Among the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002